Paper ID: 2310.07084

Investigating the Adversarial Robustness of Density Estimation Using the Probability Flow ODE

Marius Arvinte, Cory Cornelius, Jason Martin, Nageen Himayat

Beyond their impressive sampling capabilities, score-based diffusion models offer a powerful analysis tool in the form of unbiased density estimation of a query sample under the training data distribution. In this work, we investigate the robustness of density estimation using the probability flow (PF) neural ordinary differential equation (ODE) model against gradient-based likelihood maximization attacks and the relation to sample complexity, where the compressed size of a sample is used as a measure of its complexity. We introduce and evaluate six gradient-based log-likelihood maximization attacks, including a novel reverse integration attack. Our experimental evaluations on CIFAR-10 show that density estimation using the PF ODE is robust against high-complexity, high-likelihood attacks, and that in some cases adversarial samples are semantically meaningful, as expected from a robust estimator.

Submitted: Oct 10, 2023