Paper ID: 2310.07343
How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances
Zihan Zhang, Meng Fang, Ling Chen, Mohammad-Reza Namazi-Rad, Jun Wang
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at https://github.com/hyintell/awesome-refreshing-llms
Submitted: Oct 11, 2023