Paper ID: 2310.07916
Dynamic Appearance Particle Neural Radiance Field
Ancheng Lin, Jun Li
Neural Radiance Fields (NeRFs) have shown great potential in modelling 3D scenes. Dynamic NeRFs extend this model by capturing time-varying elements, typically using deformation fields. The existing dynamic NeRFs employ a similar Eulerian representation for both light radiance and deformation fields. This leads to a close coupling of appearance and motion and lacks a physical interpretation. In this work, we propose Dynamic Appearance Particle Neural Radiance Field (DAP-NeRF), which introduces particle-based representation to model the motions of visual elements in a dynamic 3D scene. DAP-NeRF consists of superposition of a static field and a dynamic field. The dynamic field is quantised as a collection of {\em appearance particles}, which carries the visual information of a small dynamic element in the scene and is equipped with a motion model. All components, including the static field, the visual features and motion models of the particles, are learned from monocular videos without any prior geometric knowledge of the scene. We develop an efficient computational framework for the particle-based model. We also construct a new dataset to evaluate motion modelling. Experimental results show that DAP-NeRF is an effective technique to capture not only the appearance but also the physically meaningful motions in a 3D dynamic scene.
Submitted: Oct 11, 2023