Paper ID: 2310.07925

First-Order Dynamic Optimization for Streaming Convex Costs

M. Rostami, H. Moradian, S. S. Kia

This paper proposes a set of novel optimization algorithms for solving a class of convex optimization problems with time-varying streaming cost function. We develop an approach to track the optimal solution with a bounded error. Unlike the existing results, our algorithm is executed only by using the first-order derivatives of the cost function which makes it computationally efficient for optimization with time-varying cost function. We compare our algorithms to the gradient descent algorithm and show why gradient descent is not an effective solution for optimization problems with time-varying cost. Several examples including solving a model predictive control problem cast as a convex optimization problem with a streaming time-varying cost function demonstrate our results.

Submitted: Oct 11, 2023