Paper ID: 2310.08645

Defect Analysis of 3D Printed Cylinder Object Using Transfer Learning Approaches

Md Manjurul Ahsan, Shivakumar Raman, Zahed Siddique

Additive manufacturing (AM) is gaining attention across various industries like healthcare, aerospace, and automotive. However, identifying defects early in the AM process can reduce production costs and improve productivity - a key challenge. This study explored the effectiveness of machine learning (ML) approaches, specifically transfer learning (TL) models, for defect detection in 3D-printed cylinders. Images of cylinders were analyzed using models including VGG16, VGG19, ResNet50, ResNet101, InceptionResNetV2, and MobileNetV2. Performance was compared across two datasets using accuracy, precision, recall, and F1-score metrics. In the first study, VGG16, InceptionResNetV2, and MobileNetV2 achieved perfect scores. In contrast, ResNet50 had the lowest performance, with an average F1-score of 0.32. Similarly, in the second study, MobileNetV2 correctly classified all instances, while ResNet50 struggled with more false positives and fewer true positives, resulting in an F1-score of 0.75. Overall, the findings suggest certain TL models like MobileNetV2 can deliver high accuracy for AM defect classification, although performance varies across algorithms. The results provide insights into model optimization and integration needs for reliable automated defect analysis during 3D printing. By identifying the top-performing TL techniques, this study aims to enhance AM product quality through robust image-based monitoring and inspection.

Submitted: Oct 12, 2023