Paper ID: 2310.08656
SplitBeam: Effective and Efficient Beamforming in Wi-Fi Networks Through Split Computing
Niloofar Bahadori, Yoshitomo Matsubara, Marco Levorato, Francesco Restuccia
Modern IEEE 802.11 (Wi-Fi) networks extensively rely on multiple-input multiple-output (MIMO) to significantly improve throughput. To correctly beamform MIMO transmissions, the access point needs to frequently acquire a beamforming matrix (BM) from each connected station. However, the size of the matrix grows with the number of antennas and subcarriers, resulting in an increasing amount of airtime overhead and computational load at the station. Conventional approaches come with either excessive computational load or loss of beamforming precision. For this reason, we propose SplitBeam, a new framework where we train a split deep neural network (DNN) to directly output the BM given the channel state information (CSI) matrix as input. We formulate and solve a bottleneck optimization problem (BOP) to keep computation, airtime overhead, and bit error rate (BER) below application requirements. We perform extensive experimental CSI collection with off-the-shelf Wi-Fi devices in two distinct environments and compare the performance of SplitBeam with the standard IEEE 802.11 algorithm for BM feedback and the state-of-the-art DNN-based approach LB-SciFi. Our experimental results show that SplitBeam reduces the beamforming feedback size and computational complexity by respectively up to 81% and 84% while maintaining BER within about 10^-3 of existing approaches. We also implement the SplitBeam DNNs on FPGA hardware to estimate the end-to-end BM reporting delay, and show that the latter is less than 10 milliseconds in the most complex scenario, which is the target channel sounding frequency in realistic multi-user MIMO scenarios.
Submitted: Oct 12, 2023