Paper ID: 2310.08817

Exploring the relationship between response time sequence in scale answering process and severity of insomnia: a machine learning approach

Zhao Su, Rongxun Liu, Keyin Zhou, Xinru Wei, Ning Wang, Zexin Lin, Yuanchen Xie, Jie Wang, Fei Wang, Shenzhong Zhang, Xizhe Zhang

Objectives: The study aims to investigate the relationship between insomnia and response time. Additionally, it aims to develop a machine learning model to predict the presence of insomnia in participants using response time data. Methods: A mobile application was designed to administer scale tests and collect response time data from 2729 participants. The relationship between symptom severity and response time was explored, and a machine learning model was developed to predict the presence of insomnia. Results: The result revealed a statistically significant difference (p<.001) in the total response time between participants with or without insomnia symptoms. A correlation was observed between the severity of specific insomnia aspects and response times at the individual questions level. The machine learning model demonstrated a high predictive accuracy of 0.743 in predicting insomnia symptoms based on response time data. Conclusions: These findings highlight the potential utility of response time data to evaluate cognitive and psychological measures, demonstrating the effectiveness of using response time as a diagnostic tool in the assessment of insomnia.

Submitted: Oct 13, 2023