Paper ID: 2310.09196

A 4-approximation algorithm for min max correlation clustering

Holger Heidrich, Jannik Irmai, Bjoern Andres

We introduce a lower bounding technique for the min max correlation clustering problem and, based on this technique, a combinatorial 4-approximation algorithm for complete graphs. This improves upon the previous best known approximation guarantees of 5, using a linear program formulation (Kalhan et al., 2019), and 40, for a combinatorial algorithm (Davies et al., 2023a). We extend this algorithm by a greedy joining heuristic and show empirically that it improves the state of the art in solution quality and runtime on several benchmark datasets.

Submitted: Oct 13, 2023