Paper ID: 2310.09442
Learning Agile Locomotion and Adaptive Behaviors via RL-augmented MPC
Yiyu Chen, Quan Nguyen
In the context of legged robots, adaptive behavior involves adaptive balancing and adaptive swing foot reflection. While adaptive balancing counteracts perturbations to the robot, adaptive swing foot reflection helps the robot to navigate intricate terrains without foot entrapment. In this paper, we manage to bring both aspects of adaptive behavior to quadruped locomotion by combining RL and MPC while improving the robustness and agility of blind legged locomotion. This integration leverages MPC's strength in predictive capabilities and RL's adeptness in drawing from past experiences. Unlike traditional locomotion controls that separate stance foot control and swing foot trajectory, our innovative approach unifies them, addressing their lack of synchronization. At the heart of our contribution is the synthesis of stance foot control with swing foot reflection, improving agility and robustness in locomotion with adaptive behavior. A hallmark of our approach is robust blind stair climbing through swing foot reflection. Moreover, we intentionally designed the learning module as a general plugin for different robot platforms. We trained the policy and implemented our approach on the Unitree A1 robot, achieving impressive results: a peak turn rate of 8.5 rad/s, a peak running speed of 3 m/s, and steering at a speed of 2.5 m/s. Remarkably, this framework also allows the robot to maintain stable locomotion while bearing an unexpected load of 10 kg, or 83\% of its body mass. We further demonstrate the generalizability and robustness of the same policy where it realizes zero-shot transfer to different robot platforms like Go1 and AlienGo robots for load carrying. Code is made available for the use of the research community at https://github.com/DRCL-USC/RL_augmented_MPC.git
Submitted: Oct 13, 2023