Paper ID: 2310.09471
Plug-and-Play Feature Generation for Few-Shot Medical Image Classification
Qianyu Guo, Huifang Du, Xing Jia, Shuyong Gao, Yan Teng, Haofen Wang, Wenqiang Zhang
Few-shot learning (FSL) presents immense potential in enhancing model generalization and practicality for medical image classification with limited training data; however, it still faces the challenge of severe overfitting in classifier training due to distribution bias caused by the scarce training samples. To address the issue, we propose MedMFG, a flexible and lightweight plug-and-play method designed to generate sufficient class-distinctive features from limited samples. Specifically, MedMFG first re-represents the limited prototypes to assign higher weights for more important information features. Then, the prototypes are variationally generated into abundant effective features. Finally, the generated features and prototypes are together to train a more generalized classifier. Experiments demonstrate that MedMFG outperforms the previous state-of-the-art methods on cross-domain benchmarks involving the transition from natural images to medical images, as well as medical images with different lesions. Notably, our method achieves over 10% performance improvement compared to several baselines. Fusion experiments further validate the adaptability of MedMFG, as it seamlessly integrates into various backbones and baselines, consistently yielding improvements of over 2.9% across all results.
Submitted: Oct 14, 2023