Paper ID: 2310.09981
Class-Specific Data Augmentation: Bridging the Imbalance in Multiclass Breast Cancer Classification
Kanan Mahammadli, Abdullah Burkan Bereketoglu, Ayse Gul Kabakci
Breast Cancer is the most common cancer among women, which is also visible in men, and accounts for more than 1 in 10 new cancer diagnoses each year. It is also the second most common cause of women who die from cancer. Hence, it necessitates early detection and tailored treatment. Early detection can provide appropriate and patient-based therapeutic schedules. Moreover, early detection can also provide the type of cyst. This paper employs class-level data augmentation, addressing the undersampled classes and raising their detection rate. This approach suggests two key components: class-level data augmentation on structure-preserving stain normalization techniques to hematoxylin and eosin-stained images and transformer-based ViTNet architecture via transfer learning for multiclass classification of breast cancer images. This merger enables categorizing breast cancer images with advanced image processing and deep learning as either benign or as one of four distinct malignant subtypes by focusing on class-level augmentation and catering to unique characteristics of each class with increasing precision of classification on undersampled classes, which leads to lower mortality rates associated with breast cancer. The paper aims to ease the duties of the medical specialist by operating multiclass classification and categorizing the image into benign or one of four different malignant types of breast cancers.
Submitted: Oct 15, 2023