Paper ID: 2310.10070
GreatSplicing: A Semantically Rich Splicing Dataset
Xiuli Bi, Jiaming Liang
In existing splicing forgery datasets, the insufficient semantic varieties of spliced regions cause a problem that trained detection models overfit semantic features rather than splicing traces. Meanwhile, because of the absence of a reasonable dataset, different detection methods proposed cannot reach a consensus on experimental settings. To address these urgent issues, GreatSplicing, a manually created splicing dataset with a considerable amount and high quality, is proposed in this paper. GreatSplicing comprises 5,000 spliced images and covers spliced regions with 335 distinct semantic categories, allowing neural networks to grasp splicing traces better. Extensive experiments demonstrate that models trained on GreatSplicing exhibit minimal misidentification rates and superior cross-dataset detection capabilities compared to existing datasets. Furthermore, GreatSplicing is available for all research purposes and can be downloaded from www.greatsplicing.net.
Submitted: Oct 16, 2023