Paper ID: 2310.11232

Learning to Sample Better

Michael S. Albergo, Eric Vanden-Eijnden

These lecture notes provide an introduction to recent advances in generative modeling methods based on the dynamical transportation of measures, by means of which samples from a simple base measure are mapped to samples from a target measure of interest. Special emphasis is put on the applications of these methods to Monte-Carlo (MC) sampling techniques, such as importance sampling and Markov Chain Monte-Carlo (MCMC) schemes. In this context, it is shown how the maps can be learned variationally using data generated by MC sampling, and how they can in turn be used to improve such sampling in a positive feedback loop.

Submitted: Oct 17, 2023