Paper ID: 2310.11895
Flexible Computation Offloading at the Edge for Autonomous Drones with Uncertain Flight Times
Giorgos Polychronis, Spyros Lalis
An ever increasing number of applications can employ aerial unmanned vehicles, or so-called drones, to perform different sensing and possibly also actuation tasks from the air. In some cases, the data that is captured at a given point has to be processed before moving to the next one. Drones can exploit nearby edge servers to offload the computation instead of performing it locally. However, doing this in a naive way can be suboptimal if servers have limited computing resources and drones have limited energy resources. In this paper, we propose a protocol and resource reservation scheme for each drone and edge server to decide, in a dynamic and fully decentralized way, whether to offload the computation and respectively whether to accept such an offloading requests, with the objective to evenly reduce the drones' mission times. We evaluate our approach through extensive simulation experiments, showing that it can significantly reduce the mission times compared to a no-offloading scenario by up to 26.2%, while outperforming an offloading schedule that has been computed offline by up to 7.4% as well as a purely opportunistic approach by up to 23.9%.
Submitted: Oct 18, 2023