Paper ID: 2310.12274

An Image is Worth Multiple Words: Discovering Object Level Concepts using Multi-Concept Prompt Learning

Chen Jin, Ryutaro Tanno, Amrutha Saseendran, Tom Diethe, Philip Teare

Textural Inversion, a prompt learning method, learns a singular text embedding for a new "word" to represent image style and appearance, allowing it to be integrated into natural language sentences to generate novel synthesised images. However, identifying multiple unknown object-level concepts within one scene remains a complex challenge. While recent methods have resorted to cropping or masking individual images to learn multiple concepts, these techniques often require prior knowledge of new concepts and are labour-intensive. To address this challenge, we introduce Multi-Concept Prompt Learning (MCPL), where multiple unknown "words" are simultaneously learned from a single sentence-image pair, without any imagery annotations. To enhance the accuracy of word-concept correlation and refine attention mask boundaries, we propose three regularisation techniques: Attention Masking, Prompts Contrastive Loss, and Bind Adjective. Extensive quantitative comparisons with both real-world categories and biomedical images demonstrate that our method can learn new semantically disentangled concepts. Our approach emphasises learning solely from textual embeddings, using less than 10% of the storage space compared to others. The project page, code, and data are available at https://astrazeneca.github.io/mcpl.github.io.

Submitted: Oct 18, 2023