Paper ID: 2310.13007
A Critical Survey on Fairness Benefits of Explainable AI
Luca Deck, Jakob Schoeffer, Maria De-Arteaga, Niklas Kühl
In this critical survey, we analyze typical claims on the relationship between explainable AI (XAI) and fairness to disentangle the multidimensional relationship between these two concepts. Based on a systematic literature review and a subsequent qualitative content analysis, we identify seven archetypal claims from 175 scientific articles on the alleged fairness benefits of XAI. We present crucial caveats with respect to these claims and provide an entry point for future discussions around the potentials and limitations of XAI for specific fairness desiderata. Importantly, we notice that claims are often (i) vague and simplistic, (ii) lacking normative grounding, or (iii) poorly aligned with the actual capabilities of XAI. We suggest to conceive XAI not as an ethical panacea but as one of many tools to approach the multidimensional, sociotechnical challenge of algorithmic fairness. Moreover, when making a claim about XAI and fairness, we emphasize the need to be more specific about what kind of XAI method is used, which fairness desideratum it refers to, how exactly it enables fairness, and who is the stakeholder that benefits from XAI.
Submitted: Oct 15, 2023