Paper ID: 2310.13016

Solving the multiplication problem of a large language model system using a graph-based method

Turker Tuncer, Sengul Dogan, Mehmet Baygin, Prabal Datta Barua, Abdul Hafeez-Baig, Ru-San Tan, Subrata Chakraborty, U. Rajendra Acharya

The generative pre-trained transformer (GPT)-based chatbot software ChatGPT possesses excellent natural language processing capabilities but is inadequate for solving arithmetic problems, especially multiplication. Its GPT structure uses a computational graph for multiplication, which has limited accuracy beyond simple multiplication operations. We developed a graph-based multiplication algorithm that emulated human-like numerical operations by incorporating a 10k operator, where k represents the maximum power to base 10 of the larger of two input numbers. Our proposed algorithm attained 100% accuracy for 1,000,000 large number multiplication tasks, effectively solving the multiplication challenge of GPT-based and other large language models. Our work highlights the importance of blending simple human insights into the design of artificial intelligence algorithms. Keywords: Graph-based multiplication; ChatGPT; Multiplication problem

Submitted: Oct 18, 2023