Paper ID: 2310.13912

Learning Motion Refinement for Unsupervised Face Animation

Jiale Tao, Shuhang Gu, Wen Li, Lixin Duan

Unsupervised face animation aims to generate a human face video based on the appearance of a source image, mimicking the motion from a driving video. Existing methods typically adopted a prior-based motion model (e.g., the local affine motion model or the local thin-plate-spline motion model). While it is able to capture the coarse facial motion, artifacts can often be observed around the tiny motion in local areas (e.g., lips and eyes), due to the limited ability of these methods to model the finer facial motions. In this work, we design a new unsupervised face animation approach to learn simultaneously the coarse and finer motions. In particular, while exploiting the local affine motion model to learn the global coarse facial motion, we design a novel motion refinement module to compensate for the local affine motion model for modeling finer face motions in local areas. The motion refinement is learned from the dense correlation between the source and driving images. Specifically, we first construct a structure correlation volume based on the keypoint features of the source and driving images. Then, we train a model to generate the tiny facial motions iteratively from low to high resolution. The learned motion refinements are combined with the coarse motion to generate the new image. Extensive experiments on widely used benchmarks demonstrate that our method achieves the best results among state-of-the-art baselines.

Submitted: Oct 21, 2023