Paper ID: 2310.14036

On discretisation drift and smoothness regularisation in neural network training

Mihaela Claudia Rosca

The deep learning recipe of casting real-world problems as mathematical optimisation and tackling the optimisation by training deep neural networks using gradient-based optimisation has undoubtedly proven to be a fruitful one. The understanding behind why deep learning works, however, has lagged behind its practical significance. We aim to make steps towards an improved understanding of deep learning with a focus on optimisation and model regularisation. We start by investigating gradient descent (GD), a discrete-time algorithm at the basis of most popular deep learning optimisation algorithms. Understanding the dynamics of GD has been hindered by the presence of discretisation drift, the numerical integration error between GD and its often studied continuous-time counterpart, the negative gradient flow (NGF). To add to the toolkit available to study GD, we derive novel continuous-time flows that account for discretisation drift. Unlike the NGF, these new flows can be used to describe learning rate specific behaviours of GD, such as training instabilities observed in supervised learning and two-player games. We then translate insights from continuous time into mitigation strategies for unstable GD dynamics, by constructing novel learning rate schedules and regularisers that do not require additional hyperparameters. Like optimisation, smoothness regularisation is another pillar of deep learning's success with wide use in supervised learning and generative modelling. Despite their individual significance, the interactions between smoothness regularisation and optimisation have yet to be explored. We find that smoothness regularisation affects optimisation across multiple deep learning domains, and that incorporating smoothness regularisation in reinforcement learning leads to a performance boost that can be recovered using adaptions to optimisation methods.

Submitted: Oct 21, 2023