Paper ID: 2310.14069

Ladder Bottom-up Convolutional Bidirectional Variational Autoencoder for Image Translation of Dotted Arabic Expiration Dates

Ahmed Zidane, Ghada Soliman

This paper proposes an approach of Ladder Bottom-up Convolutional Bidirectional Variational Autoencoder (LCBVAE) architecture for the encoder and decoder, which is trained on the image translation of the dotted Arabic expiration dates by reconstructing the Arabic dotted expiration dates into filled-in expiration dates. We employed a customized and adapted version of Convolutional Recurrent Neural Network CRNN model to meet our specific requirements and enhance its performance in our context, and then trained the custom CRNN model with the filled-in images from the year of 2019 to 2027 to extract the expiration dates and assess the model performance of LCBVAE on the expiration date recognition. The pipeline of (LCBVAE+CRNN) can be then integrated into an automated sorting systems for extracting the expiry dates and sorting the products accordingly during the manufacture stage. Additionally, it can overcome the manual entry of expiration dates that can be time-consuming and inefficient at the merchants. Due to the lack of the availability of the dotted Arabic expiration date images, we created an Arabic dot-matrix True Type Font (TTF) for the generation of the synthetic images. We trained the model with unrealistic synthetic dates of 60,000 images and performed the testing on a realistic synthetic date of 3000 images from the year of 2019 to 2027, represented as yyyy/mm/dd. In our study, we demonstrated the significance of latent bottleneck layer with improving the generalization when the size is increased up to 1024 in downstream transfer learning tasks as for image translation. The proposed approach achieved an accuracy of 97% on the image translation with using the LCBVAE architecture that can be generalized for any downstream learning tasks as for image translation and reconstruction.

Submitted: Oct 21, 2023