Paper ID: 2310.14747

MCC-KD: Multi-CoT Consistent Knowledge Distillation

Hongzhan Chen, Siyue Wu, Xiaojun Quan, Rui Wang, Ming Yan, Ji Zhang

Large language models (LLMs) have showcased remarkable capabilities in complex reasoning through chain of thought (CoT) prompting. Recently, there has been a growing interest in transferring these reasoning abilities from LLMs to smaller models. However, achieving both the diversity and consistency in rationales presents a challenge. In this paper, we focus on enhancing these two aspects and propose Multi-CoT Consistent Knowledge Distillation (MCC-KD) to efficiently distill the reasoning capabilities. In MCC-KD, we generate multiple rationales for each question and enforce consistency among the corresponding predictions by minimizing the bidirectional KL-divergence between the answer distributions. We investigate the effectiveness of MCC-KD with different model architectures (LLaMA/FlanT5) and various model scales (3B/7B/11B/13B) on both mathematical reasoning and commonsense reasoning benchmarks. The empirical results not only confirm MCC-KD's superior performance on in-distribution datasets but also highlight its robust generalization ability on out-of-distribution datasets.

Submitted: Oct 23, 2023