Paper ID: 2310.14785
Vision-Enhanced Semantic Entity Recognition in Document Images via Visually-Asymmetric Consistency Learning
Hao Wang, Xiahua Chen, Rui Wang, Chenhui Chu
Extracting meaningful entities belonging to predefined categories from Visually-rich Form-like Documents (VFDs) is a challenging task. Visual and layout features such as font, background, color, and bounding box location and size provide important cues for identifying entities of the same type. However, existing models commonly train a visual encoder with weak cross-modal supervision signals, resulting in a limited capacity to capture these non-textual features and suboptimal performance. In this paper, we propose a novel \textbf{V}isually-\textbf{A}symmetric co\textbf{N}sisten\textbf{C}y \textbf{L}earning (\textsc{Vancl}) approach that addresses the above limitation by enhancing the model's ability to capture fine-grained visual and layout features through the incorporation of color priors. Experimental results on benchmark datasets show that our approach substantially outperforms the strong LayoutLM series baseline, demonstrating the effectiveness of our approach. Additionally, we investigate the effects of different color schemes on our approach, providing insights for optimizing model performance. We believe our work will inspire future research on multimodal information extraction.
Submitted: Oct 23, 2023