Paper ID: 2310.16242

ZzzGPT: An Interactive GPT Approach to Enhance Sleep Quality

Yonchanok Khaokaew, Kaixin Ji, Thuc Hanh Nguyen, Hiruni Kegalle, Marwah Alaofi, Hao Xue, Flora D. Salim

This paper explores the intersection of technology and sleep pattern comprehension, presenting a cutting-edge two-stage framework that harnesses the power of Large Language Models (LLMs). The primary objective is to deliver precise sleep predictions paired with actionable feedback, addressing the limitations of existing solutions. This innovative approach involves leveraging the GLOBEM dataset alongside synthetic data generated by LLMs. The results highlight significant improvements, underlining the efficacy of merging advanced machine-learning techniques with a user-centric design ethos. Through this exploration, we bridge the gap between technological sophistication and user-friendly design, ensuring that our framework yields accurate predictions and translates them into actionable insights.

Submitted: Oct 24, 2023