Paper ID: 2310.16968
Understanding Social Structures from Contemporary Literary Fiction using Character Interaction Graph -- Half Century Chronology of Influential Bengali Writers
Nafis Irtiza Tripto, Mohammed Eunus Ali
Social structures and real-world incidents often influence contemporary literary fiction. Existing research in literary fiction analysis explains these real-world phenomena through the manual critical analysis of stories. Conventional Natural Language Processing (NLP) methodologies, including sentiment analysis, narrative summarization, and topic modeling, have demonstrated substantial efficacy in analyzing and identifying similarities within fictional works. However, the intricate dynamics of character interactions within fiction necessitate a more nuanced approach that incorporates visualization techniques. Character interaction graphs (or networks) emerge as a highly suitable means for visualization and information retrieval from the realm of fiction. Therefore, we leverage character interaction graphs with NLP-derived features to explore a diverse spectrum of societal inquiries about contemporary culture's impact on the landscape of literary fiction. Our study involves constructing character interaction graphs from fiction, extracting relevant graph features, and exploiting these features to resolve various real-life queries. Experimental evaluation of influential Bengali fiction over half a century demonstrates that character interaction graphs can be highly effective in specific assessments and information retrieval from literary fiction. Our data and codebase are available at https://cutt.ly/fbMgGEM
Submitted: Oct 25, 2023