Paper ID: 2310.17131
Virtual Accessory Try-On via Keypoint Hallucination
Junhong Gou, Bo Zhang, Li Niu, Jianfu Zhang, Jianlou Si, Chen Qian, Liqing Zhang
The virtual try-on task refers to fitting the clothes from one image onto another portrait image. In this paper, we focus on virtual accessory try-on, which fits accessory (e.g., glasses, ties) onto a face or portrait image. Unlike clothing try-on, which relies on human silhouette as guidance, accessory try-on warps the accessory into an appropriate location and shape to generate a plausible composite image. In contrast to previous try-on methods that treat foreground (i.e., accessories) and background (i.e., human faces or bodies) equally, we propose a background-oriented network to utilize the prior knowledge of human bodies and accessories. Specifically, our approach learns the human body priors and hallucinates the target locations of specified foreground keypoints in the background. Then our approach will inject foreground information with accessory priors into the background UNet. Based on the hallucinated target locations, the warping parameters are calculated to warp the foreground. Moreover, this background-oriented network can also easily incorporate auxiliary human face/body semantic segmentation supervision to further boost performance. Experiments conducted on STRAT dataset validate the effectiveness of our proposed method.
Submitted: Oct 26, 2023