Paper ID: 2310.17664
Cascaded Multi-task Adaptive Learning Based on Neural Architecture Search
Yingying Gao, Shilei Zhang, Zihao Cui, Chao Deng, Junlan Feng
Cascading multiple pre-trained models is an effective way to compose an end-to-end system. However, fine-tuning the full cascaded model is parameter and memory inefficient and our observations reveal that only applying adapter modules on cascaded model can not achieve considerable performance as fine-tuning. We propose an automatic and effective adaptive learning method to optimize end-to-end cascaded multi-task models based on Neural Architecture Search (NAS) framework. The candidate adaptive operations on each specific module consist of frozen, inserting an adapter and fine-tuning. We further add a penalty item on the loss to limit the learned structure which takes the amount of trainable parameters into account. The penalty item successfully restrict the searched architecture and the proposed approach is able to search similar tuning scheme with hand-craft, compressing the optimizing parameters to 8.7% corresponding to full fine-tuning on SLURP with an even better performance.
Submitted: Oct 23, 2023