Paper ID: 2310.17788

Utilizing Language Models for Energy Load Forecasting

Hao Xue, Flora D. Salim

Energy load forecasting plays a crucial role in optimizing resource allocation and managing energy consumption in buildings and cities. In this paper, we propose a novel approach that leverages language models for energy load forecasting. We employ prompting techniques to convert energy consumption data into descriptive sentences, enabling fine-tuning of language models. By adopting an autoregressive generating approach, our proposed method enables predictions of various horizons of future energy load consumption. Through extensive experiments on real-world datasets, we demonstrate the effectiveness and accuracy of our proposed method. Our results indicate that utilizing language models for energy load forecasting holds promise for enhancing energy efficiency and facilitating intelligent decision-making in energy systems.

Submitted: Oct 26, 2023