Paper ID: 2310.17869
Grid Jigsaw Representation with CLIP: A New Perspective on Image Clustering
Zijie Song, Zhenzhen Hu, Richang Hong
Unsupervised representation learning for image clustering is essential in computer vision. Although the advancement of visual models has improved image clustering with efficient visual representations, challenges still remain. Firstly, these features often lack the ability to represent the internal structure of images, hindering the accurate clustering of visually similar images. Secondly, the existing features tend to lack finer-grained semantic labels, limiting the ability to capture nuanced differences and similarities between images. In this paper, we first introduce Jigsaw based strategy method for image clustering called Grid Jigsaw Representation (GJR) with systematic exposition from pixel to feature in discrepancy against human and computer. We emphasize that this algorithm, which mimics human jigsaw puzzle, can effectively improve the model to distinguish the spatial feature between different samples and enhance the clustering ability. GJR modules are appended to a variety of deep convolutional networks and tested with significant improvements on a wide range of benchmark datasets including CIFAR-10, CIFAR-100/20, STL-10, ImageNet-10 and ImageNetDog-15. On the other hand, convergence efficiency is always an important challenge for unsupervised image clustering. Recently, pretrained representation learning has made great progress and released models can extract mature visual representations. It is obvious that use the pretrained model as feature extractor can speed up the convergence of clustering where our aim is to provide new perspective in image clustering with reasonable resource application and provide new baseline. Further, we innovate pretrain-based Grid Jigsaw Representation (pGJR) with improvement by GJR. The experiment results show the effectiveness on the clustering task with respect to the ACC, NMI and ARI three metrics and super fast convergence speed.
Submitted: Oct 27, 2023