Paper ID: 2310.18424

Fast Machine Learning Method with Vector Embedding on Orthonormal Basis and Spectral Transform

Louis Yu Lu

This paper presents a novel fast machine learning method that leverages two techniques: Vector Embedding on Orthonormal Basis (VEOB) and Spectral Transform (ST). The VEOB converts the original data encoding into a vector embedding with coordinates projected onto orthonormal bases. The Singular Value Decomposition (SVD) technique is used to calculate the vector basis and projection coordinates, leading to an enhanced distance measurement in the embedding space and facilitating data compression by preserving the projection vectors associated with the largest singular values. On the other hand, ST transforms sequence of vector data into spectral space. By applying the Discrete Cosine Transform (DCT) and selecting the most significant components, it streamlines the handling of lengthy vector sequences. The paper provides examples of word embedding, text chunk embedding, and image embedding, implemented in Julia language with a vector database. It also investigates unsupervised learning and supervised learning using this method, along with strategies for handling large data volumes.

Submitted: Oct 27, 2023