Paper ID: 2310.18776

Enabling Mixed Autonomy Traffic Control

Matthew Nice, Matt Bunting, Alex Richardson, Gergely Zachar, Jonathan W. Lee, Alexandre Bayen, Maria Laura Delle Monache, Benjamin Seibold, Benedetto Piccoli, Jonathan Sprinkle, Dan Work

We demonstrate a new capability of automated vehicles: mixed autonomy traffic control. With this new capability, automated vehicles can shape the traffic flows composed of other non-automated vehicles, which has the promise to improve safety, efficiency, and energy outcomes in transportation systems at a societal scale. Investigating mixed autonomy mobile traffic control must be done in situ given that the complex dynamics of other drivers and their response to a team of automated vehicles cannot be effectively modeled. This capability has been blocked because there is no existing scalable and affordable platform for experimental control. This paper introduces an extensible open-source hardware and software platform, enabling a team of 100 vehicles to execute several different vehicular control algorithms as a collaborative fleet, composed of three different makes and models, which drove 22752 miles in a combined 1022 hours, over 5 days in Nashville, TN in November 2022.

Submitted: Oct 28, 2023