Paper ID: 2310.19650

KeyGen2Vec: Learning Document Embedding via Multi-label Keyword Generation in Question-Answering

Iftitahu Ni'mah, Samaneh Khoshrou, Vlado Menkovski, Mykola Pechenizkiy

Representing documents into high dimensional embedding space while preserving the structural similarity between document sources has been an ultimate goal for many works on text representation learning. Current embedding models, however, mainly rely on the availability of label supervision to increase the expressiveness of the resulting embeddings. In contrast, unsupervised embeddings are cheap, but they often cannot capture implicit structure in target corpus, particularly for samples that come from different distribution with the pretraining source. Our study aims to loosen up the dependency on label supervision by learning document embeddings via Sequence-to-Sequence (Seq2Seq) text generator. Specifically, we reformulate keyphrase generation task into multi-label keyword generation in community-based Question Answering (cQA). Our empirical results show that KeyGen2Vec in general is superior than multi-label keyword classifier by up to 14.7% based on Purity, Normalized Mutual Information (NMI), and F1-Score metrics. Interestingly, although in general the absolute advantage of learning embeddings through label supervision is highly positive across evaluation datasets, KeyGen2Vec is shown to be competitive with classifier that exploits topic label supervision in Yahoo! cQA with larger number of latent topic labels.

Submitted: Oct 30, 2023