Paper ID: 2310.20079
Hybridizing Physics and Neural ODEs for Predicting Plasma Inductance Dynamics in Tokamak Fusion Reactors
Allen M. Wang, Darren T. Garnier, Cristina Rea
While fusion reactors known as tokamaks hold promise as a firm energy source, advances in plasma control, and handling of events where control of plasmas is lost, are needed for them to be economical. A significant bottleneck towards applying more advanced control algorithms is the need for better plasma simulation, where both physics-based and data-driven approaches currently fall short. The former is bottle-necked by both computational cost and the difficulty of modelling plasmas, and the latter is bottle-necked by the relative paucity of data. To address this issue, this work applies the neural ordinary differential equations (ODE) framework to the problem of predicting a subset of plasma dynamics, namely the coupled plasma current and internal inductance dynamics. As the neural ODE framework allows for the natural inclusion of physics-based inductive biases, we train both physics-based and neural network models on data from the Alcator C-Mod fusion reactor and find that a model that combines physics-based equations with a neural ODE performs better than both existing physics-motivated ODEs and a pure neural ODE model.
Submitted: Oct 30, 2023