Paper ID: 2310.20117
Refined Equivalent Pinhole Model for Large-scale 3D Reconstruction from Spaceborne CCD Imagery
Hong Danyang, Yu Anzhu, Ji Song, Cao Xuefeng, Quan Yujun, Guo Wenyue, Qiu Chunping
In this study, we present a large-scale earth surface reconstruction pipeline for linear-array charge-coupled device (CCD) satellite imagery. While mainstream satellite image-based reconstruction approaches perform exceptionally well, the rational functional model (RFM) is subject to several limitations. For example, the RFM has no rigorous physical interpretation and differs significantly from the pinhole imaging model; hence, it cannot be directly applied to learning-based 3D reconstruction networks and to more novel reconstruction pipelines in computer vision. Hence, in this study, we introduce a method in which the RFM is equivalent to the pinhole camera model (PCM), meaning that the internal and external parameters of the pinhole camera are used instead of the rational polynomial coefficient parameters. We then derive an error formula for this equivalent pinhole model for the first time, demonstrating the influence of the image size on the accuracy of the reconstruction. In addition, we propose a polynomial image refinement model that minimizes equivalent errors via the least squares method. The experiments were conducted using four image datasets: WHU-TLC, DFC2019, ISPRS-ZY3, and GF7. The results demonstrated that the reconstruction accuracy was proportional to the image size. Our polynomial image refinement model significantly enhanced the accuracy and completeness of the reconstruction, and achieved more significant improvements for larger-scale images.
Submitted: Oct 31, 2023