Paper ID: 2311.00429

Crop Disease Classification using Support Vector Machines with Green Chromatic Coordinate (GCC) and Attention based feature extraction for IoT based Smart Agricultural Applications

Shashwat Jha, Vishvaditya Luhach, Gauri Shanker Gupta, Beependra Singh

Crops hold paramount significance as they serve as the primary provider of energy, nutrition, and medicinal benefits for the human population. Plant diseases, however, can negatively affect leaves during agricultural cultivation, resulting in significant losses in crop output and economic value. Therefore, it is crucial for farmers to identify crop diseases. However, this method frequently necessitates hard work, a lot of planning, and in-depth familiarity with plant pathogens. Given these numerous obstacles, it is essential to provide solutions that can easily interface with mobile and IoT devices so that our farmers can guarantee the best possible crop development. Various machine learning (ML) as well as deep learning (DL) algorithms have been created & studied for the identification of plant disease detection, yielding substantial and promising results. This article presents a novel classification method that builds on prior work by utilising attention-based feature extraction, RGB channel-based chromatic analysis, Support Vector Machines (SVM) for improved performance, and the ability to integrate with mobile applications and IoT devices after quantization of information. Several disease classification algorithms were compared with the suggested model, and it was discovered that, in terms of accuracy, Vision Transformer-based feature extraction and additional Green Chromatic Coordinate feature with SVM classification achieved an accuracy of (GCCViT-SVM) - 99.69%, whereas after quantization for IoT device integration achieved an accuracy of - 97.41% while almost reducing 4x in size. Our findings have profound implications because they have the potential to transform how farmers identify crop illnesses with precise and fast information, thereby preserving agricultural output and ensuring food security.

Submitted: Nov 1, 2023