Paper ID: 2311.00582
Minimally Modifying a Markov Game to Achieve Any Nash Equilibrium and Value
Young Wu, Jeremy McMahan, Yiding Chen, Yudong Chen, Xiaojin Zhu, Qiaomin Xie
We study the game modification problem, where a benevolent game designer or a malevolent adversary modifies the reward function of a zero-sum Markov game so that a target deterministic or stochastic policy profile becomes the unique Markov perfect Nash equilibrium and has a value within a target range, in a way that minimizes the modification cost. We characterize the set of policy profiles that can be installed as the unique equilibrium of a game and establish sufficient and necessary conditions for successful installation. We propose an efficient algorithm that solves a convex optimization problem with linear constraints and then performs random perturbation to obtain a modification plan with a near-optimal cost. The code for our algorithm is available at this https URL .
Submitted: Nov 1, 2023