Paper ID: 2311.01022

NeuroWrite: Predictive Handwritten Digit Classification using Deep Neural Networks

Kottakota Asish, P. Sarath Teja, R. Kishan Chander, Dr. D. Deva Hema

The rapid evolution of deep neural networks has revolutionized the field of machine learning, enabling remarkable advancements in various domains. In this article, we introduce NeuroWrite, a unique method for predicting the categorization of handwritten digits using deep neural networks. Our model exhibits outstanding accuracy in identifying and categorising handwritten digits by utilising the strength of convolutional neural networks (CNNs) and recurrent neural networks (RNNs).In this article, we give a thorough examination of the data preparation methods, network design, and training methods used in NeuroWrite. By implementing state-of-the-art techniques, we showcase how NeuroWrite can achieve high classification accuracy and robust generalization on handwritten digit datasets, such as MNIST. Furthermore, we explore the model's potential for real-world applications, including digit recognition in digitized documents, signature verification, and automated postal code recognition. NeuroWrite is a useful tool for computer vision and pattern recognition because of its performance and adaptability.The architecture, training procedure, and evaluation metrics of NeuroWrite are covered in detail in this study, illustrating how it can improve a number of applications that call for handwritten digit classification. The outcomes show that NeuroWrite is a promising method for raising the bar for deep neural network-based handwritten digit recognition.

Submitted: Nov 2, 2023