Paper ID: 2311.01635

RTP: Rethinking Tensor Parallelism with Memory Deduplication

Cheng Luo, Tianle Zhong, Geoffrey Fox

In the evolving landscape of neural network models, one prominent challenge stand out: the significant memory overheads associated with training expansive models. Addressing this challenge, this study delves deep into the Rotated Tensor Parallelism (RTP). RTP is an innovative approach that strategically focuses on memory deduplication in distributed training environments. It boasts of unique features like a customized communication primitive and the Flyweight Pattern initialization. Furthermore, RTP ensures a seamless overlap between partition computation and partition weight communication, optimizing the training process. Our empirical evaluations underscore RTP's efficiency, revealing that its memory consumption during distributed system training is remarkably close to the optimal - distributing the memory overhead of a single machine equitably among multiple machines. The experimental results demonstrate that RTP is capable of achieving comparable performance to Distributed Data Parallel while providing support for significantly larger models with near-linear scalability in terms of memory. Code of RTP is available at https://github.com/wdlctc/rtp.

Submitted: Nov 2, 2023