Paper ID: 2311.02268
LLMs-augmented Contextual Bandit
Ali Baheri, Cecilia O. Alm
Contextual bandits have emerged as a cornerstone in reinforcement learning, enabling systems to make decisions with partial feedback. However, as contexts grow in complexity, traditional bandit algorithms can face challenges in adequately capturing and utilizing such contexts. In this paper, we propose a novel integration of large language models (LLMs) with the contextual bandit framework. By leveraging LLMs as an encoder, we enrich the representation of the context, providing the bandit with a denser and more informative view. Preliminary results on synthetic datasets demonstrate the potential of this approach, showing notable improvements in cumulative rewards and reductions in regret compared to traditional bandit algorithms. This integration not only showcases the capabilities of LLMs in reinforcement learning but also opens the door to a new era of contextually-aware decision systems.
Submitted: Nov 3, 2023