Paper ID: 2311.02840
Saturn: Efficient Multi-Large-Model Deep Learning
Kabir Nagrecha, Arun Kumar
In this paper, we propose Saturn, a new data system to improve the efficiency of multi-large-model training (e.g., during model selection/hyperparameter optimization). We first identify three key interconnected systems challenges for users building large models in this setting -- parallelism technique selection, distribution of GPUs over jobs, and scheduling. We then formalize these as a joint problem, and build a new system architecture to tackle these challenges simultaneously. Our evaluations show that our joint-optimization approach yields 39-49% lower model selection runtimes than typical current DL practice.
Submitted: Nov 6, 2023