Paper ID: 2311.04330
Model-Free Source Seeking by a Novel Single-Integrator with Attenuating Oscillations and Better Convergence Rate: Robotic Experiments
Shivam Bajpai, Ahmed A. Elgohary, Sameh A. Eisa
In this paper we validate, including experimentally, the effectiveness of a recent theoretical developments made by our group on control-affine Extremum Seeking Control (ESC) systems. In particular, our validation is concerned with the problem of source seeking by a mobile robot to the unknown source of a scalar signal (e.g., light). Our recent theoretical results made it possible to estimate the gradient of the unknown objective function (i.e., the scalar signal) incorporated in the ESC and use such information to apply an adaptation law which attenuates the oscillations of the ESC system while converging to the extremum (i.e., source). Based on our previous results, we propose here an amended design of the simple single-integrator control-affine structure known in ESC literature and show that it can functions effectively to achieve a model-free, real-time source seeking of light with attenuated oscillations using only local measurements of the light intensity. Results imply that the proposed design has significant potential as it also demonstrated much better convergence rate. We hope this paper encourages expansion of the proposed design in other fields, problems and experiments.
Submitted: Nov 7, 2023