Paper ID: 2311.06062

Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration

Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, Tao Jiang

Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Prior attempts have quantified the privacy risks of language models (LMs) via MIAs, but there is still no consensus on whether existing MIA algorithms can cause remarkable privacy leakage on practical Large Language Models (LLMs). Existing MIAs designed for LMs can be classified into two categories: reference-free and reference-based attacks. They are both based on the hypothesis that training records consistently strike a higher probability of being sampled. Nevertheless, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs. The reference-based attack seems to achieve promising effectiveness in LLMs, which measures a more reliable membership signal by comparing the probability discrepancy between the target model and the reference model. However, the performance of reference-based attack is highly dependent on a reference dataset that closely resembles the training dataset, which is usually inaccessible in the practical scenario. Overall, existing MIAs are unable to effectively unveil privacy leakage over practical fine-tuned LLMs that are overfitting-free and private. We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA). Specifically, since memorization in LLMs is inevitable during the training process and occurs before overfitting, we introduce a more reliable membership signal, probabilistic variation, which is based on memorization rather than overfitting. Furthermore, we introduce a self-prompt approach, which constructs the dataset to fine-tune the reference model by prompting the target LLM itself. In this manner, the adversary can collect a dataset with a similar distribution from public APIs.

Submitted: Nov 10, 2023