Paper ID: 2311.07787

Hybrid Synaptic Structure for Spiking Neural Network Realization

Sasan Razmkhah, Mustafa Altay Karamuftuoglu, Ali Bozbey

Neural networks and neuromorphic computing play pivotal roles in deep learning and machine vision. Due to their dissipative nature and inherent limitations, traditional semiconductor-based circuits face challenges in realizing ultra-fast and low-power neural networks. However, the spiking behavior characteristic of single flux quantum (SFQ) circuits positions them as promising candidates for spiking neural networks (SNNs). Our previous work showcased a JJ-Soma design capable of operating at tens of gigahertz while consuming only a fraction of the power compared to traditional circuits, as documented in [1]. This paper introduces a compact SFQ-based synapse design that applies positive and negative weighted inputs to the JJ-Soma. Using an RSFQ synapse empowers us to replicate the functionality of a biological neuron, a crucial step in realizing a complete SNN. The JJ-Synapse can operate at ultra-high frequencies, exhibits orders of magnitude lower power consumption than CMOS counterparts, and can be conveniently fabricated using commercial Nb processes. Furthermore, the network's flexibility enables modifications by incorporating cryo-CMOS circuits for weight value adjustments. In our endeavor, we have successfully designed, fabricated, and partially tested the JJ-Synapse within our cryocooler system. Integration with the JJ-Soma further facilitates the realization of a high-speed inference SNN.

Submitted: Nov 13, 2023