Paper ID: 2311.08195

Automated Fact-Checking in Dialogue: Are Specialized Models Needed?

Eric Chamoun, Marzieh Saeidi, Andreas Vlachos

Prior research has shown that typical fact-checking models for stand-alone claims struggle with claims made in dialogues. As a solution, fine-tuning these models on labelled dialogue data has been proposed. However, creating separate models for each use case is impractical, and we show that fine-tuning models for dialogue results in poor performance on typical fact-checking. To overcome this challenge, we present techniques that allow us to use the same models for both dialogue and typical fact-checking. These mainly focus on retrieval adaptation and transforming conversational inputs so that they can be accurately predicted by models trained on stand-alone claims. We demonstrate that a typical fact-checking model incorporating these techniques is competitive with state-of-the-art models fine-tuned for dialogue, while maintaining its accuracy on stand-alone claims.

Submitted: Nov 14, 2023