Paper ID: 2311.08376
Ensemble sampling for linear bandits: small ensembles suffice
David Janz, Alexander E. Litvak, Csaba Szepesvári
We provide the first useful and rigorous analysis of ensemble sampling for the stochastic linear bandit setting. In particular, we show that, under standard assumptions, for a $d$-dimensional stochastic linear bandit with an interaction horizon $T$, ensemble sampling with an ensemble of size of order $\smash{d \log T}$ incurs regret at most of the order $\smash{(d \log T)^{5/2} \sqrt{T}}$. Ours is the first result in any structured setting not to require the size of the ensemble to scale linearly with $T$ -- which defeats the purpose of ensemble sampling -- while obtaining near $\smash{\sqrt{T}}$ order regret. Ours is also the first result that allows infinite action sets.
Submitted: Nov 14, 2023