Paper ID: 2311.08493
Performance of Machine Learning Classification in Mammography Images using BI-RADS
Malitha Gunawardhana, Norbert Zolek
This research aims to investigate the classification accuracy of various state-of-the-art image classification models across different categories of breast ultrasound images, as defined by the Breast Imaging Reporting and Data System (BI-RADS). To achieve this, we have utilized a comprehensively assembled dataset of 2,945 mammographic images sourced from 1,540 patients. In order to conduct a thorough analysis, we employed six advanced classification architectures, including VGG19 \cite{simonyan2014very}, ResNet50 \cite{he2016deep}, GoogleNet \cite{szegedy2015going}, ConvNext \cite{liu2022convnet}, EfficientNet \cite{tan2019efficientnet}, and Vision Transformers (ViT) \cite{dosovitskiy2020image}, instead of traditional machine learning models. We evaluate models in three different settings: full fine-tuning, linear evaluation and training from scratch. Our findings demonstrate the effectiveness and capability of our Computer-Aided Diagnosis (CAD) system, with a remarkable accuracy of 76.39\% and an F1 score of 67.94\% in the full fine-tuning setting. Our findings indicate the potential for enhanced diagnostic accuracy in the field of breast imaging, providing a solid foundation for future endeavors aiming to improve the precision and reliability of CAD systems in medical imaging.
Submitted: Nov 14, 2023