Paper ID: 2311.10541

Detection of Offensive and Threatening Online Content in a Low Resource Language

Fatima Muhammad Adam, Abubakar Yakubu Zandam, Isa Inuwa-Dutse

Hausa is a major Chadic language, spoken by over 100 million people in Africa. However, from a computational linguistic perspective, it is considered a low-resource language, with limited resources to support Natural Language Processing (NLP) tasks. Online platforms often facilitate social interactions that can lead to the use of offensive and threatening language, which can go undetected due to the lack of detection systems designed for Hausa. This study aimed to address this issue by (1) conducting two user studies (n=308) to investigate cyberbullying-related issues, (2) collecting and annotating the first set of offensive and threatening datasets to support relevant downstream tasks in Hausa, (3) developing a detection system to flag offensive and threatening content, and (4) evaluating the detection system and the efficacy of the Google-based translation engine in detecting offensive and threatening terms in Hausa. We found that offensive and threatening content is quite common, particularly when discussing religion and politics. Our detection system was able to detect more than 70% of offensive and threatening content, although many of these were mistranslated by Google's translation engine. We attribute this to the subtle relationship between offensive and threatening content and idiomatic expressions in the Hausa language. We recommend that diverse stakeholders participate in understanding local conventions and demographics in order to develop a more effective detection system. These insights are essential for implementing targeted moderation strategies to create a safe and inclusive online environment.

Submitted: Nov 17, 2023