Paper ID: 2311.10731

Gender-Based Comparative Study of Type 2 Diabetes Risk Factors in Kolkata, India: A Machine Learning Approach

Rahul Jain, Anoushka Saha, Gourav Daga, Durba Bhattacharya, Madhura Das Gupta, Sourav Chowdhury, Suparna Roychowdhury

Type 2 diabetes mellitus represents a prevalent and widespread global health concern, necessitating a comprehensive assessment of its risk factors. This study aimed towards learning whether there is any differential impact of age, Lifestyle, BMI and Waist to height ratio on the risk of Type 2 diabetes mellitus in males and females in Kolkata, West Bengal, India based on a sample observed from the out-patient consultation department of Belle Vue Clinic in Kolkata. Various machine learning models like Logistic Regression, Random Forest, and Support Vector Classifier, were used to predict the risk of diabetes, and performance was compared based on different predictors. Our findings indicate a significant age-related increase in risk of diabetes for both males and females. Although exercising and BMI was found to have significant impact on the risk of Type 2 diabetes in males, in females both turned out to be statistically insignificant. For both males and females, predictive models based on WhtR demonstrated superior performance in risk assessment compared to those based on BMI. This study sheds light on the gender-specific differences in the risk factors for Type 2 diabetes, offering valuable insights that can be used towards more targeted healthcare interventions and public health strategies.

Submitted: Oct 15, 2023