Paper ID: 2311.10885
A Video-Based Activity Classification of Human Pickers in Agriculture
Abhishesh Pal, Antonio C. Leite, Jon G. O. Gjevestad, Pål J. From
In farming systems, harvesting operations are tedious, time- and resource-consuming tasks. Based on this, deploying a fleet of autonomous robots to work alongside farmworkers may provide vast productivity and logistics benefits. Then, an intelligent robotic system should monitor human behavior, identify the ongoing activities and anticipate the worker's needs. In this work, the main contribution consists of creating a benchmark model for video-based human pickers detection, classifying their activities to serve in harvesting operations for different agricultural scenarios. Our solution uses the combination of a Mask Region-based Convolutional Neural Network (Mask R-CNN) for object detection and optical flow for motion estimation with newly added statistical attributes of flow motion descriptors, named as Correlation Sensitivity (CS). A classification criterion is defined based on the Kernel Density Estimation (KDE) analysis and K-means clustering algorithm, which are implemented upon in-house collected dataset from different crop fields like strawberry polytunnels and apple tree orchards. The proposed framework is quantitatively analyzed using sensitivity, specificity, and accuracy measures and shows satisfactory results amidst various dataset challenges such as lighting variation, blur, and occlusions.
Submitted: Nov 17, 2023