Paper ID: 2311.10904

Closely-Spaced Object Classification Using MuyGPyS

Kerianne Pruett, Nathan McNaughton, Michael Schneider

Accurately detecting rendezvous and proximity operations (RPO) is crucial for understanding how objects are behaving in the space domain. However, detecting closely-spaced objects (CSO) is challenging for ground-based optical space domain awareness (SDA) algorithms as two objects close together along the line-of-sight can appear blended as a single object within the point-spread function (PSF) of the optical system. Traditional machine learning methods can be useful for differentiating between singular objects and closely-spaced objects, but many methods require large training sample sizes or high signal-to-noise conditions. The quality and quantity of realistic data make probabilistic classification methods a superior approach, as they are better suited to handle these data inadequacies. We present CSO classification results using the Gaussian process python package, MuyGPyS, and examine classification accuracy as a function of angular separation and magnitude difference between the simulated satellites. This orbit-independent analysis is done on highly accurate simulated SDA images that emulate realistic ground-based commercial-of-the-shelf (COTS) optical sensor observations of CSOs. We find that MuyGPyS outperforms traditional machine learning methods, especially under more challenging circumstances.

Submitted: Nov 17, 2023