Paper ID: 2311.11306
UMAAF: Unveiling Aesthetics via Multifarious Attributes of Images
Weijie Li, Yitian Wan, Xingjiao Wu, Junjie Xu, Cheng Jin, Liang He
With the increasing prevalence of smartphones and websites, Image Aesthetic Assessment (IAA) has become increasingly crucial. While the significance of attributes in IAA is widely recognized, many attribute-based methods lack consideration for the selection and utilization of aesthetic attributes. Our initial step involves the acquisition of aesthetic attributes from both intra- and inter-perspectives. Within the intra-perspective, we extract the direct visual attributes of images, constituting the absolute attribute. In the inter-perspective, our focus lies in modeling the relative score relationships between images within the same sequence, forming the relative attribute. Then, to better utilize image attributes in aesthetic assessment, we propose the Unified Multi-attribute Aesthetic Assessment Framework (UMAAF) to model both absolute and relative attributes of images. For absolute attributes, we leverage multiple absolute-attribute perception modules and an absolute-attribute interacting network. The absolute-attribute perception modules are first pre-trained on several absolute-attribute learning tasks and then used to extract corresponding absolute attribute features. The absolute-attribute interacting network adaptively learns the weight of diverse absolute-attribute features, effectively integrating them with generic aesthetic features from various absolute-attribute perspectives and generating the aesthetic prediction. To model the relative attribute of images, we consider the relative ranking and relative distance relationships between images in a Relative-Relation Loss function, which boosts the robustness of the UMAAF. Furthermore, UMAAF achieves state-of-the-art performance on TAD66K and AVA datasets, and multiple experiments demonstrate the effectiveness of each module and the model's alignment with human preference.
Submitted: Nov 19, 2023